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Abstract Existence theorems are given for the problem of finding a point (z0, x0) of a set
E×K such that (z0, x0) ∈ B(z0, x0)×A(z0, x0) and, for all η ∈ A(z0, x0), (F(z0, x0, x0, η),

C(z0, x0, x0, η)) ∈ α where α is a relation on 2Y (i.e., a subset of 2Y × 2Y ), A : E × K −→
2K , B : E × K −→ 2E , C : E × K × K × K −→ 2Y and F : E × K × K × K −→ 2Y are
some set-valued maps, and Y is a topological vector space. Detailed discussions are devoted
to special cases of α and C which correspond to several generalized vector quasi-equilibrium
problems with set-valued maps. In such special cases, existence theorems are obtained with
or without pseudomonotonicity assumptions.

Keywords Quasivariational inclusion problem · Set-valued map · Existence theorem ·
Pseudomonotonicity · Generalized concavity

1 Introduction

It is known [4] that equilibrium problem provides a unified approach to various problems in
optimization theory, saddle point theory, game theory, fixed point theory, variational inequal-
ities. . . In recent years, much attention is paid to generalized quasi-equilibrium problems.
The generalized quasi-equilibrium problem in its simplest form is the problem of finding a
point (z0, x0) ∈ E × K such that (z0, x0) ∈ ̂B(x0)× ̂A(x0) and

ϕ(z0, x0, η) ≥ 0, ∀η ∈ ̂A(x0),

where E (resp. K ) is a subset of a topological vector space Z (resp. X ), ̂A : K −→ 2K and
̂B : K −→ 2E are set-valued maps, and ϕ : E × K × K −→ R is a function. The generalized
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quasi-equilibrium problem and its extensions are investigated in [5,6,20,21,23,28,37,41–43]
under various assumptions. An existence result for such a problem is obtained in [5,Theorem
3.1] under the assumption that K is a convex compact set, f is a continuous function and
̂A is a set-valued map which is continuous in the sense of [3]. It is shown [41,Theorem 2]
that the continuity property of f can be weakened to the lower semicontinuity property if ̂A
belongs to a strictly smaller subclass A of the class of continuous set-valued maps. Namely,
A consists of set-valued maps ̂A which are upper semicontinuous [3] and which have lower
open sections, i.e., ̂A−1(x) := {ξ ∈ K : x ∈ ̂A(ξ)} is open in K for each x ∈ K .However, it
is known [28,p. 178] that, for K being a convex compact set, each map ̂A ∈ A is a constant
(set-valued) map, i.e., ̂A does not depend on ξ ∈ K . So, Theorem 2 of [41] cannot be applied
to non-constant set-valued maps ̂A.

In [17] four generalized versions of the above quasi-equilibrium problem are introduced.
More precisely, assuming that ϕ̂ : E × K × K −→ 2Y and ̂C : K −→ 2Y are set-valued
maps, the authors of [17] consider the following problems (̂Pi ), i = 1, 2, 3, 4 :

Problem (̂Pi ) : Find (z0, x0) ∈ E × K such that (z0, x0) ∈ ̂B(x0)× ̂A(x0), and

αi (ϕ̂(z0, x0, η), ̂C(x0)), ∀η ∈ ̂A(x0),

where αi is a relation on 2Y (i.e. αi is a subset of 2Y × 2Y ) defined by

α1 = {(M, N ) ∈ 2Y × 2Y : M �⊂ N },
α2 = {(M, N ) ∈ 2Y × 2Y : M ⊂ N },
α3 = {(M, N ) ∈ 2Y × 2Y : M ∩ N �= ∅ (the empty set)},
α4 = {(M, N ) ∈ 2Y × 2Y : M ∩ N = ∅},

and the symbol αi (M, N ) is used to denote that (M, N ) ∈ αi .

Under the assumption that ̂A is a set-valued map having open lower sections, and under
other suitable assumptions, several results for the existence of solutions of each of Problems
(̂Pi ) are established in [17,Theorems 3.1–3.5]. Unfortunately, as we will see in Sect. 3, the
assumptions used in these theorems are not sufficient for the correctness of these results.

The aim of this paper is to give existence results for the following general model:
Problem (Pα) : Find a point (z0, x0) ∈ E ×K such that (z0, x0) ∈ B(z0, x0)× A(z0, x0)

and

α(F(z0, x0, x0, η),C(z0, x0, x0, η)), ∀η ∈ A(z0, x0), (1.1)

where α is a relation on the power set 2Y of a topological vector space Y (i.e. α is a subset of
2Y ×2Y ), E (resp. K ) is a nonempty convex subset of a locally convex Hausdorff topological
vector space Z (resp. X ), A : E×K −→ 2K , B : E×K −→ 2E ,C : E×K ×K ×K −→ 2Y

and F : E × K × K × K −→ 2Y are set-valued maps with nonempty values.
Observe that Problem (Pα) provides a general model which includes as special cases many

known generalized scalar/vector quasi-equilibrium problems. Let us illustrate this remark by
some recent problems which can be regarded as Problem (Pα) with appropriate choice of
α, A, B,C and F.

(i) Each of Problems (̂Pi ), i = 1, 2, 3, 4,which is formulated above and is studied in [17],
corresponds to Problem (Pα) with A(z, ξ) ≡ ̂A(ξ), B(z, ξ) ≡ ̂B(ξ), C(z, ξ, x, η) ≡ ̂C(x),
F(z, ξ, x, η) ≡ ϕ̂(z, x, η) and α = αi , i = 1, 2, 3, 4. Problems (̂Pi ), i = 1, 2, 3, 4,
include as special cases several known set-valued vector equilibrium problems investigated
in [1,8,10,13,22,25,30,34,35,38].
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(ii) The papers [39,43] deal with the following Problems (˜P1) and (˜P2) :
Problem (˜P1) (resp. Problem (˜P2)): Find (z0, x0) ∈ E×K such that (z0, x0) ∈ B(z0, x0)×

̂A(x0) and

ϕ̃(z0, x0, η) ⊂ ˜C(z0, x0, x0), ∀η ∈ ̂A(x0),

(resp. ϕ̃(z0, x0, x0) ⊂ ˜C(z0, x0, η)), ∀η ∈ ̂A(x0))

where ̂A : K −→ 2K , B : E × K−→2E , ˜C : E × K × K−→2Y and ϕ̃ : E × K × K−→2Y

are set-valued maps. Obviously, Problem (˜P1) is exactly Problem (Pα) with A(z, ξ)≡̂A(ξ),
C(z, ξ, x, η)≡˜C(z, ξ, x), F(z, ξ, x, η) ≡ ϕ̃(z, x, η) and α=α2. Problem (˜P2) is Problem
(Pα)with A(z, ξ) ≡ ̂A(ξ),C(z, ξ, x, η) ≡ ˜C(z, x, η), F(z, ξ, x, η) ≡ ϕ̃(z, ξ, x) and α=α2.

(iii) Some existing papers (see e.g. [8,9,15] and references therein) consider simpli-
fied versions of the problem of finding a point (z0, x0) ∈ E × K such that (z0, x0) ∈
B(z0, x0) × A(z0, x0) and, for each η ∈ A(z0, x0), there exists y ∈ F(z0, x0, x0, η) with
y /∈ ̂C(z0, x0, x0, η) where A, B and F are as in the formulation of Problem (Pα) and ̂C :
E×K ×K ×K −→ 2Y is a set-valued map. Since the existence of a point y ∈ F(z0, x0, x0, η)

with y /∈ ̂C(z0, x0, x0, η)means that F(z0, x0, x0, η)∩[Y\̂C(z0, x0, x0, η)] �= ∅, we see that
the above problem is a special case of Problem (Pα) with C(z, ξ, x, η) := Y \̂C(z, ξ, x, η)
and α = α3. This explains that our general model includes as special cases all the problems
mentioned in [8,9,15].

(iv) In [14,24] some simultaneous vector quasi-equilibrium problems are examined. More
precisely, assume that g1 : K1 × K2 × K1 −→ 2Y1 , g2 : K1 × K2 × K2 −→ 2Y2 ,

Ai : K1 × K2 −→ 2Ki , i = 1, 2, and Ci : K1 × K2 −→ 2Yi , i = 1, 2, are set-valued maps
where Yi , i = 1, 2, are topological vector spaces and Ki , i = 1, 2, are nonempty convex
sets of topological vector spaces Xi , i = 1, 2. One of the problems considered in [24] is the
following Problem (̂P4,4) :

Problem (̂P4,4) : Find a point (x0
1 , x0

2 ) ∈ K1 × K2 such that x0
i ∈ Ai (x0

1 , x0
2 ), i = 1, 2,

and

g1(x
0
1 , x0

2 , η1) ∩ int C1(x
0
1 , x0

2 ) = ∅, ∀η1 ∈ A1(x
0
1 , x0

2 ), (1.2)

g2(x
0
1 , x0

2 , η2) ∩ int C2(x
0
1 , x0

2 ) = ∅, ∀η2 ∈ A2(x
0
1 , x0

2 ), (1.3)

where we assume that ∅ �= int Ci (ξ1, ξ2) �= Yi for all i = 1, 2 and (ξ1, ξ2) ∈ K1 × K2. (The
symbol “int" denotes the interior.)

Some approaches can be used to show that Problem (̂P4,4) is a special case of Problem
(Pα). Let us mention one of them. For this purpose, let us introduce the Cartesian products
X = X1 × X2, Y = Y1 × Y2 and K = K1 × K2. For ξ = (ξ1, ξ2) ∈ K , x = (x1, x2) ∈ K
and η = (η1, η2) ∈ K , let us set

F(z, ξ, x, η) ≡ g1(ξ1, x2, η1)× g2(x1, ξ2, η2) ⊂ Y,

C(z, ξ, x, η) ≡ [Y1\int C1(ξ1, ξ2)] × [Y2\int C2(ξ1, ξ2)] ⊂ Y,

A(z, ξ) ≡ A1(ξ1, ξ2)× A2(ξ1, ξ2) ⊂ K .

Then obviously, conditions (1.2) and (1.3) can be rewritten as the unique requirement that

F(z0, x0, x0, η) ⊂ C(z0, x0, x0, η), ∀η ∈ A(z0, x0),

where x0 := (x0
1 , x0

2 ) and η = (η1, η2). Now it is clear that Problem (̂P4,4) can be regarded
as Problem (Pα) if we define the relation α on 2Y = 2Y1×Y2 as the family of all pairs
(M, N ) ∈ 2Y × 2Y such that the conditions (M1, N1) ∈ α2 and (M2, N2) ∈ α2 are simul-
taneously satisfied, where M1 and M2 (resp. N1 and N2) are the “components" of M (resp.
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N ), i.e., M = M1 × M2 ⊂ Y = Y1 × Y2 (resp. N = N1 × N2 ⊂ Y = Y1 × Y2). Recall that
(Mi , Ni ) ∈ α2 means that Mi ⊂ Ni . It is worth noticing that in our case the set E and the
set-valued map B play no role in Problem (Pα) since by the above definitions F, C and A
do not depend on z.

The symmetric vector quasi-equilibrium problem investigated in [14] is to find a point
(x0

1 , x0
2 ) ∈ K1 × K2 ⊂ X1 × X2 such that x0

i ∈ Ai (x0
1 , x0

2 ), i = 1, 2, and

ϕ1(x
0
1 , x0

2 )− ϕ1(η1, x0
2 ) /∈ int C1, ∀η1 ∈ A1(x

0
1 , x0

2 ),

ϕ2(x
0
1 , x0

2 )− ϕ2(x
0
1 , η2) /∈ int C2, ∀η2 ∈ A2(x

0
1 , x0

2 ),

where Xi , Yi , Ki and Ai , i = 1, 2, are as above, ϕi : K1 × K2 −→ Yi , i = 1, 2, are single-
valued maps and Ci ⊂ Yi , i = 1, 2, are (constant) closed convex cones with nonempty inte-
rior (Ci �= Yi , i = 1, 2). As in the case of Problem (̂P4,4), this problem of [14] can be regarded
as Problem (Pα) if for each ξ = (ξ1, ξ2) ∈ K = K1 × K2, x = (x1, x2) ∈ K = K1 × K2

and η = (η1, η2) ∈ K = K1 × K2, we set

F(z, ξ, x, η) ≡ [ϕ1(x1, ξ2)− ϕ1(η1, ξ2)] × [ϕ2(ξ1, x2)− ϕ2(ξ1, η2)],
C(z, ξ, x, η) ≡ [Y1\int C1] × [Y2\int C2].

(The set-valued map A and the relation α are as above.)
The main result of this paper is Theorem 3.1 which gives sufficient conditions for the

existence of solutions of Problem (Pα) with arbitrary relation α. We will study in detail the
special case when α = αi , i = 1, 2, 3, 4, and C does not depend on η and can be expressed
as the sum of a convex set and a convex cone (see the maps (3.13) and (3.14) below). In
particular, we will obtain correct results for the vector quasi-equilibrium problems in [17]
under assumptions quite different from those of [17] and we will see that some known results
of [5,6,13,14,20,21,23,39,43] are special cases of our main result.

We conclude this introduction by observing that the assumption of existence of open lower
sections of some set-valued maps is not used in proving our results. We refer the reader to
the recent papers [16,32,37] where such an assumption is needed for investigating problems
which can be viewed as special cases of Problem (Pα) or which are similar to Problem (Pα).

2 Preliminaries

Let X be a topological space. Each subset of X is a topological space with a topology induced
by the given topology of X. In this paper, neighbourhoods of x ∈ X are understood as open
neighbourhoods, and they are denoted by U (x),U1(x),U2(x), . . . The symbols cl A, int A
and co A are used to denote the closure, interior and convex hull of A.

We use the symbol f : X −→ 2Y to denote that f is a set-valued map between two
topological spaces X and Y. Let im f and gr f be the image and graph of f :

im f = f (X) =
⋃

x∈X

f (x),

gr f = {(x, y) ∈ X × Y : y ∈ f (x)}.
If g : X −→ 2Y is another set-valued map, then we write f ⊂ g if f (x) ⊂ g(x) for all

x ∈ X. If ψ : X −→ 2Z is a set-valued map between topological spaces X and Z , then the
map V = f × ψ : X −→ 2Y×Z is defined by V (x) = f (x)× ψ(x) for all x ∈ X.
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We will use the continuity properties of set-valued maps in the usual sense of [3]. Namely,
f is upper semicontinuous (usc) if for any x ∈ X and any open set N ⊃ f (x) we have
N ⊃ f (x ′) for all x ′ from some neighbourhood U (x) of x . Map f is lower semicontinuous
(lsc) if for any x ∈ X and any open set N with f (x) ∩ N �= ∅ we have f (x ′) ∩ N �= ∅
for all x ′ from some neighbourhood U (x) of x . Map f is continuous if it is both usc and
lsc. If gr f is a closed (resp. open) set of X × Y , then we say that f has closed (resp. open)
graph. A map having closed graph is also called a closed map. Map f is compact-valued
(resp. closed-valued) if for all x ∈ X f (x) is a compact (resp. closed) subset of Y. Map f
is compact if im f is contained in a compact set of Y. Observe that if f : X −→ 2Y and
ψ : X −→ 2Z are compact then f ×ψ is compact. Map f is acyclic if it is usc and if, for all
x ∈ X, f (x) is nonempty, compact and acyclic. Here a topological space is called acyclic if
all of its reduced Čech homology groups over rationals vanish. It is known that contractible
spaces are acyclic; and hence, convex sets and star-shaped sets are acyclic. Observe that the
Cartesian product of two acyclic sets is acyclic (see the Künneth formulae in [33]).

We will need the following fixed point theorem due to Park [36,Theorem 7].

Theorem 2.1 Let K be a nonempty convex subset of a locally convex Hausdorff topological
vector space X. If f : K −→ 2K is a compact acyclic map, then f has a fixed point, i.e.,
there exists x0 ∈ K such that x0 ∈ f (x0).

Assume that α is a relation on 2Y , i.e., α is a subset of the Cartesian product 2Y × 2Y .

For two sets M ∈ 2Y and N ∈ 2Y , we write α(M, N ) if and only if (M, N ) ∈ α. Denote
by α the relation on 2Y defined by α = 2Y × 2Y \α. Then the symbol α(M, N ) means that
(M, N ) /∈ α. We now give some propositions for later use.

Proposition 2.1 Let X be a Hausdorff topological vector space and let Y be a topological
vector space. Let α and β be arbitrary relations on 2Y . Let a ⊂ X be a nonempty com-
pact convex subset, and f : a × a −→ 2Y , c : a × a −→ 2Y , g : a × a −→ 2Y and
d : a × a −→ 2Y be set-valued maps with nonempty values such that

(i) For all (x, η) ∈ a × a,

α( f (x, η), c(x, η)) �⇒ β(g(x, η), d(x, η)).

(ii) For all η ∈ a, the set

s(η) = {x ∈ a : β(g(x, η), d(x, η))}
is closed in a.

(iii) For all x ∈ a, the set

t (x) = {η ∈ a : α( f (x, η), c(x, η))}
is convex.

(iv) For all x ∈ a, α( f (x, x), c(x, x)).

Then the set

{x ∈ a : β(g(x, η), d(x, η)), ∀η ∈ a}
is nonempty.

Proof This is an easy consequence of the KKM-Lemma (see [11]) applied to the map s :
a −→ 2a defined in (ii). Indeed, first observe that s has nonempty closed values. In addition,
it is a KKM-map in the sense that
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co {η j , j = 1, 2, . . . , n} ⊂
n

⋃

j=1

s(η j )

for all points η j ∈ a, j = 1, 2, ..., n, where n is an arbitrary positive integer. Indeed,
otherwise there exist η j ∈ a, j = 1, 2, ..., n, and x ∈ co {η j , j = 1, 2, ..., n} such that

x /∈
n

⋃

j=1

s(η j ),

i.e.,

β(g(x, η j ), d(x, η j )), ∀ j = 1, 2, . . . , n.

By condition (i) η j ∈ t (x), for all j = 1, 2, ..., n. Because of the convexity of t (x) (see
(iii)) this yields x ∈ t (x), i.e., α( f (x, x), c(x, x)), a contradiction to (iv). Applying the
KKM-Lemma (see [11]) proves that there exists a point x0 ∈ a such that x0 ∈ s(η) for all
η ∈ a. The conclusion of Proposition 2.1 is thus established. ��

Remark 2.1 When a is not compact, Proposition 2.1 remains true under the following coer-
civity condition: there exist a nonempty compact set a1 ⊂ a and a compact convex set b ⊂ a
such that, for all x ∈ a\a1, there exists η ∈ b with β(g(x, η), d(x, η)).

Remark 2.2 When β = αi (resp. α = αi ), i = 1, 2, 3, 4, sufficient conditions for the vad-
ility of condition (ii) (resp. (iii)) of Proposition 2.1 are given in Corollary 3.2 below (resp.
Proposition 2.3 below).

Proposition 2.2 Let α and β be arbitrary relations on 2Y . Let a ⊂ X be a nonempty convex
subset, and let f, c, g, d : a × a −→ 2Y be set-valued maps with nonempty values. Assume
that

(i) For all (x, η) ∈ a × a with x �= η, if α( f (x, η), c(x, η)) then α( f (u, η), c(u, η))
for some u ∈ ]x, η[.

(ii) For all (x, η) ∈ a × a with x �= η and for all u ∈ ]x, η[, if β(g(x, u), d(x, u)) then
α( f (u, η), c(u, η)).

(iii) For all x ∈ a, α( f (x, x), c(x, x)).

Then

{x ∈ a : β(g(x, η), d(x, η)), ∀η ∈ a} ⊂ {x ∈ a : α( f (x, η), c(x, η)), ∀η ∈ a}.

Proof Assume to the contrary that the conclusion of Proposition 2.2 is not true. Then there
exists x ∈ a such that

∀η ∈ a, β(g(x, η), d(x, η)) (2.1)

and

∃ξ ∈ a, α( f (x, ξ), c(x, ξ)).

From this and from (iii) it follows that x �= ξ.Hence, from (i), α( f (u, ξ), c(u, ξ)) for some
u ∈ ]x, ξ [. By (ii) β(g(x, u), d(x, u)). This contradicts (2.1) since u ∈ a. ��
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Remark 2.3 Condition (ii) of Proposition 2.2 holds if condition (iii) of Proposition 2.2 is
satisfied and if

(ii)′ For all (x, η) ∈ a × a with x �= η and for all u ∈ ]x, η[, if β(g(x, u), d(x, u)) and
α( f (u, η), c(u, η)) then α( f (u, u), c(u, u)).

Indeed, if condition (ii) of Proposition 2.2 does not hold, then by (ii)′ we have
α( f (u, u), c(u, u)), a contradiction to condition (iii) of Proposition 2.2.

Remark 2.4 Condition (i) of Proposition 2.2 holds if for all (x, η) ∈ a × a with x �= η the
set

{u ∈ [x, η] : α( f (u, η), c(u, η))} (2.2)

is open in [x, η].

Remark 2.5 From Corollary 3.2 to be given in Sect. 3 it follows that for (x, η) ∈ a × a with
x �= η the set (2.2) is open in [x, η] (and hence, by Remark 2.4 condition (i) of Proposition
2.2 holds) under one of the following conditions:

1. α = α1, f (·, η) : [x, η] −→ 2Y is usc and compact-valued, and c(·, η) : [x, η] −→ 2Y

has open graph.
2. α = α2, f (·, η) : [x, η] −→ 2Y is lsc and c(·, η) : [x, η] −→ 2Y has closed graph.
3. α = α3, f (·, η) : [x, η] −→ 2Y is usc and compact-valued, and c(·, η) : [x, η] −→ 2Y

has closed graph.
4. α = α4, f (·, η) : [x, η] −→ 2Y is lsc and c(·, η) : [x, η] −→ 2Y has open graph.

We now introduce some generalized convexity and concavity notions for set-valued maps
which are useful for checking condition (iii) of Proposition 2.1 with α = αi , i = 1, 2, 3, 4.

Let a ⊂ X be a nonempty convex set, c′ ⊂ Y be a convex cone, and f : a −→ 2Y be a
set-valued map.

Map f is called c′-convex on a if for all xi ∈ a, i = 1, 2, and γ ∈]0, 1[
f (γ x1 + (1 − γ )x2) ⊂ γ f (x1)+ (1 − γ ) f (x2)− c′.

Map f is called proper c′-quasiconvex on a if for all xi ∈ a, i = 1, 2, and x ∈ co {xi , i =
1, 2},

either f (x) ⊂ f (x1)− c′,
or f (x) ⊂ f (x2)− c′.

Map f is called natural c′-quasiconvex on a if for all xi ∈ a, i = 1, 2, and γ ∈ ]0, 1[
f (γ x1 + (1 − γ )x2) ⊂ co { f (xi ), i = 1, 2} − c′.

Observe that the above notions of generalized convexity extend the corresponding notions
of [12,40] for the single-valued case to the set-valued case. Observe also that convexity ⇒
natural quasiconvexity, and proper quasiconvexity ⇒ natural quasiconvexity. It is known
[12] that even in single-valued case the converse of each of these implications is not true in
general.

We now give some notions of generalized concavity.
Map f is called c′-concave on a if for all xi ∈ a, i = 1, 2, and γ ∈ ]0, 1[

γ f (x1)+ (1 − γ ) f (x2) ⊂ f (γ x1 + (1 − γ )x2)− c′.
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Map f is called proper c′-quasiconcave on a if for all xi ∈ a, i = 1, 2, and x ∈
co {xi , i = 1, 2},

either f (x1) ⊂ f (x)− c′,
or f (x2) ⊂ f (x)− c′.

Map f is called generalized proper c′-quasiconcave on a if for all xi ∈ a, yi ∈ f (xi ), i =
1, 2, and x ∈ co {xi , i = 1, 2}, there exists y ∈ f (x) such that

either y1 ∈ y − c′,
or y2 ∈ y − c′.

Obviously, proper quasiconcavity ⇒ generalized proper quasiconcavity, and the converse
implication is true in case f being single-valued.

When f is single-valued, the above notions of concavity and proper quasiconcavity are
reduced to the known notions in [12,40].

Let h ⊂ Y be a nonempty set and let

Qα = {x ∈ a : α( f (x), h + c′)},
qα = {x ∈ a : α( f (x), h + int c′)}.

When dealing with qα we always assume that int c′ �= ∅. The following proposition, whose
easy proof is deleted, gives conditions under which Qα and qα are convex.

Proposition 2.3

1. If f is generalized proper (−c′)-quasiconcave on a, then Qα1 and qα1 are convex. If
int c′ �= ∅ and if f is generalized proper (−int c′)-quasiconcave on a, then for all
x ∈ Qα1 , η ∈ qα1 and u ∈ ]x, η[ we have u ∈ Qα1 .

2. If f is natural (−c′)-quasiconvex on a and if h is convex, then Qα2 and qα2 are convex.
If in addition int c′ �= ∅, then for all x ∈ Qα2 , η ∈ qα2 and u ∈ ]x, η[ we have u ∈ qα2 .

3. If f is c′-concave on a and if h is convex, then Qα3 and qα3 are convex. If in addition
int c′ �= ∅, then for all x ∈ Qα3 , η ∈ qα3 and u ∈ ]x, η[ we have u ∈ qα3 .

4. If f is proper c′-quasiconvex on a, then Qα4 and qα4 are convex. If int c′ �= ∅ and f is
proper (int c′)-quasiconvex on a, then for all x ∈ Qα4 , η ∈ qα4 and u ∈ ]x, η[ we have
u ∈ Qα4 .

3 Main result

From now on we assume that Y is a topological vector space, X and Z are locally convex
Hausdorff topological vector spaces, and K ⊂ X and E ⊂ Z are nonempty convex sets. We
also assume that A : E × K −→ 2K , B : E × K −→ 2E , F : W −→ 2Y , C : W −→ 2Y ,

G : W −→ 2Y and D : W −→ 2Y are set-valued maps with nonempty values, where
W := E × K × K × K denotes the Cartesian product of topological spaces E, K , K and K .

In this section, we are interested in conditions under which there exists a solution of Prob-
lem (Pα) formulated in the Introduction. Before mentioning these conditions let us discuss
some earlier results. In [41,Theorem 2] and in [6,Corollary 3.3] it is assumed that K is a
compact convex set and A(z, ξ) ≡ ̂A(ξ) where ̂A : K −→ 2K is a upper semicontinuous
closed-valued map having open lower sections (see the Introduction). Under these assump-
tions ̂A must be a constant set-valued map, i.e., ̂A(ξ) does not depend on ξ ∈ K (see [28,p.
178]). So Theorem 2 of [41] and Corollary 3.3 of [6] cannot be applied if ̂A is a non-constant
set-valued map.
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In [17,Theorem 3.1] the following existence result is obtained for Problem (̂P1) formu-
lated in the Introduction: Assume that E ⊂ Z and K ⊂ X are nonempty compact convex
sets. Assume, in addition, that

(i) ̂A : K −→ 2K is a set-valued map with nonempty closed convex values and open
lower sections.

(ii) ̂B : K −→ 2E is a upper semicontinuous map with nonempty closed acyclic values.
(iii) C0 : K −→ 2Y is a set-valued map with int C0(x) �= ∅ for all x ∈ K .
(iv) ϕ̂ : E × K × K −→ 2Y is a set-valued map such that

(a) For any η ∈ K , the set

{(z, x) ∈ E × K : ϕ̂(z, x, η) ⊂ −int C0(x)}
is open in E × K .

(b) For any z ∈ E, the set-valued map ϕ̂(z, x, η) of the variable (x, η) ∈ K × K is
weak Type II C0-diagonally quasiconvex [17] in the variable η, i.e., for any finite
set L = {ηi , i = 1, 2, ..., n} ⊂ K and any point η ∈ co L there exists a point
ηi ∈ L such that ϕ̂(z, η, ηi ) �⊂ −int C0(η).

Under these assumptions Theorem 3.1 of [17] claims that there exists a solution of Prob-
lem (̂P1)with ̂C(x) = −int C0(x) for all x ∈ K .We now give an example proving that these
assumptions are not sufficient for the validity of the conclusion of Theorem 3.1 of [17].

Counterexample 3.1 Consider Problem (̂P1) where X = Y = Z = R, E = K = [0, 1] ⊂
R, ̂B(x) ≡ {1}, ̂C(x) ≡ −int R+, ϕ̂(z, x, η) = {z(x − η)} ⊂ R for all z, x, η ∈ [0, 1] and

̂A(x) =
{

[0, 1], if x ∈ [0, 1[
{0}, if x = 1.

Let us set C0(x) ≡ R+. To see that Theorem 3.1 of [17] can be applied to the above
example, it suffices to verify condition (b) since other conditions are clear. Indeed, let us fix
z ∈ E = [0, 1]. For any finite set L = {η j , j = 1, 2, . . . , n} ⊂ K = [0, 1] and any point
η ∈ co L , let us take ηi = min{η j , j = 1, 2, . . . , n}. Then ηi ≤ η and hence, z(η− ηi ) ≥ 0
for all z ∈ E = [0, 1]. Thus, for fixed z ∈ E, ϕ̂(z, η, ηi ) �⊂ −int C0(η), i.e., condition (b)
is valid. By [17,Theorem 3.1] there exists a solution (z0, x0) of Problem (̂P1). Therefore,
x0 ∈ [0, 1[ , z0 = 1 and z0(x0 − η) ≥ 0 for all η ∈ ̂A(x0) = [0, 1], i.e., x0 ≥ η for all
η ∈ [0, 1]. This is impossible.

We have shown that Theorem 3.1 of [17] is incorrect. Example 3.1 also proves the incor-
rectness of Theorems 3.2 and 3.3 of [17]. Now, if in Example 3.1 we replace the condition
̂C(x) ≡ −int R+ by the condition ̂C(x) ≡ R+, then we will obtain a counterexample show-
ing that Theorems 3.4 and 3.5 of [17] fail to hold. Thus, all the results of [17] giving the
existence of solutions of Problems (̂Pi ), i = 1, 2, 3, 4, are incorrect.

In this section, we will obtain a general existence theorem for Problem (Pα) formulated
in the Introduction. We will discuss in this section and in the subsequent section the special
cases of Problem (Pα) where α is one of the relations αi , i = 1, 2, 3, 4. Observe that our
main result (Theorem 3.1) can be applied to non-constant set valued map A, and can be
used to derive correct existence theorems for Problems (̂Pi ), i = 1, 2, 3, 4, as well as some
known results of [5,6,13,14,20,21,23,39,43].

The proof of the main result of this paper is based on two lemmas. Before formulating the
first of them let us introduce the following notion of a β-pair where β is an arbitrary relation
on 2Y . The pair of maps (G, D) is called a β-pair if
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either (i) G is usc and compact-valued, and there exists a set-valued map Q : W −→ 2Y

with open graph such that for all w ∈ W

β(G(w), D(w)) ⇐⇒ G(w) �⊂ Q(w). (3.1)

or (ii) G is lsc, and there exists a set-valued map Q : W −→ 2Y with closed graph such
that for all w ∈ W

β(G(w), D(w)) ⇐⇒ G(w) ⊂ Q(w). (3.2)

Proposition 3.1

1. If G is usc and compact-valued, and if D has open graph, then (G, D) is a β-pair with
β = α1.

2. If G is lsc, and if D has closed graph, then (G, D) is a β-pair with β = α2.

3. If G is usc and compact-valued, and if D has closed graph, then (G, D) is a β-pair
with β = α3.

4. If G is lsc, and if D has open graph, then (G, D) is a β-pair with β = α4.

Proof To prove the first and second claims, it suffices to take Q = D. To prove the third and
fourth claims, it is enough to take Q = ̂D, where ̂D is defined by

̂D(w) = Y \D(w) (w ∈ W ),

and observe that D has open (resp. closed) graph if and only if ̂D has closed (resp. open)
graph. ��
Lemma 3.1 Let A : E × K −→ 2K be a lsc map. Let β be an arbitrary relation on 2Y . Let
(G, D) be a β-pair. Then the map ϕβ : E × K −→ 2K , defined by

ϕβ(z, ξ) = {x ∈ K : β(G(z, ξ, x, η), D(z, ξ, x, η)), ∀η ∈ A(z, ξ)},
has a closed graph.

Proof To prove that the graph of ϕβ, i.e., the set

gr ϕβ := {(z, ξ, x) ∈ E × K × K : x ∈ ϕβ(z, ξ)},
is closed, it suffices to show that the complement of this graph in the topological space
E × K × K is open, i.e., if (̃z,˜ξ, x̃) /∈ gr ϕβ then there exist neighbourhoods U (̃z),U (˜ξ)
and U (̃x) such that

(z, ξ, x) /∈ gr ϕβ, (3.3)

for all (z, ξ, x) ∈ U (̃z)× U (˜ξ)× U (̃x).We first assume that the pair (G, D) satisfies condi-
tion (i) in the definition of a β-pair. Since (̃z,˜ξ, x̃) /∈ gr ϕβ there exists η̃ ∈ A(̃z,˜ξ) such that
β(G(w̃), D(w̃)), i.e., G(w̃) ⊂ Q(w̃), where w̃ := (̃z,˜ξ, x̃, η̃) and Q is the map appearing
in condition (i). In other words, we have

(w̃,G(w̃)) ⊂ gr Q. (3.4)

Observe from [3,Proposition 7, p.73] that the map g : W −→ 2W×Y , defined by

g(w) = (w,G(w)), (3.5)
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is usc since G is usc and compact-valued. Since g(w̃) ⊂ gr Q (see (3.4)) and since gr Q is
an open set, we derive from the upper semicontinuity of g that there exist neighbourhoods
U1(̃z),U1(˜ξ),U (̃x) and U (̃η) such that g(w) ⊂ gr Q, i.e.,

G(w) ⊂ Q(w), (3.6)

for all w := (z, ξ, x, η) ∈ U (w̃) := U1(̃z)× U1(˜ξ)× U (̃x)× U (̃η).
Observe now that η̃ ∈ A(̃z,˜ξ) ∩ U (̃η)which implies that A(̃z,˜ξ) ∩ U (̃η) �= ∅.Therefore,

by the lower semicontinuity of A there exist neighbourhoods U (̃z) ⊂ U1(̃z) and U (˜ξ) ⊂
U1(˜ξ) such that

A(z, ξ) ∩ U (̃η) �= ∅, (3.7)

for all z ∈ U (̃z) and ξ ∈ U (˜ξ). We claim that (3.3) holds for all (z, ξ, x) ∈ U (̃z)× U (˜ξ)×
U (̃x). Indeed, since z ∈ U (̃z) and ξ ∈ U (˜ξ), there exists η ∈ A(z, ξ) ∩ U (̃η) (see (3.7)).
Setting w = (z, ξ, x, η) ∈ U (w̃) we get from (3.6) G(w) ⊂ Q(w), i.e.,

β(G(w), D(w)) (see (3.1)). (3.8)

Thus, for all (z, ξ, x) ∈ U (̃z) × U (˜ξ) × U (̃x) we find η ∈ A(z, ξ) satisfying (3.8). This
proves (3.3), as desired.

We now prove (3.3), assuming that the pair (G, D) satisfies condition (ii) in the definition
of a β-pair. Since (̃z,˜ξ, x̃) /∈ gr ϕβ there exists η̃ ∈ A(̃z,˜ξ) such that β(G(w̃), D(w̃)), i.e.,
G(w̃) �⊂ Q(w̃) where w̃ = (̃z,˜ξ, x̃, η̃) and Q is the map appearing in condition (ii). In other
words, for some ỹ ∈ G(w̃) we have ỹ /∈ Q(w̃), or equivalently, (w̃, ỹ) /∈ gr Q. From this
and from the closedness of gr Q it follows that there exist neighbourhoods U1(̃z), U1(˜ξ),

U1(̃x),U1(̃η) and U1(ỹ) such that (w, y) /∈ gr Q, i.e.,

y /∈ Q(w), (3.9)

for allw = (z, ξ, x, η) ∈ U1(w̃) := U1(̃z)×U1(˜ξ)×U1(̃x)×U1(̃η) and y ∈ U1(ỹ).Observe
that G(w̃) ∩ U1(ỹ) �= ∅ since ỹ ∈ G(w̃) ∩ U1(ỹ). Hence, by the lower semicontinuity of
G there exist neighbourhoods U2(̃z), U2(˜ξ), U2 (̃x), and U2(̃η) such that

G(w) ∩ U1(ỹ) �= ∅, (3.10)

for all w = (z, ξ, x, η) ∈ U2(w̃) := U2 (̃z) × U2(˜ξ) × U2 (̃x) × U2(̃η). Similarly, since
U1(̃η) ∩ U2 (̃η) is an open set meeting A(̃z,˜ξ) at η̃, and since A is lsc, there exist neighbour-
hoods U3(̃z) and U (˜ξ) ⊂ U1(˜ξ) ∩ U2(˜ξ) such that

A(z, ξ) ∩ [U1(̃η) ∩ U2 (̃η)] �= ∅, (3.11)

for all z ∈ U3(̃z) and ξ ∈ U (˜ξ). Setting U (̃z) = U1(̃z) ∩ U2(̃z) ∩ U3(̃z), U (̃x) =
U1(̃x) ∩ U2(̃x) we infer that (3.3) holds for all (z, ξ, x) ∈ U (̃z) × U (˜ξ) × U (̃x). Indeed,
since z ∈ U (̃z) and ξ ∈ U (˜ξ) there exists η ∈ A(z, ξ)∩ [U1(̃η) ∩ U2(̃η)] (see (3.11)). Since
w = (z, ξ, x, η) ∈ U2(w̃) there exists y ∈ U1(ỹ) with y ∈ G(w) (see (3.10)). Therefore,
(3.9) holds. Since y ∈ G(w) this implies that G(w) �⊂ Q(w)which, by (3.2), is equivalent to
condition (3.8). Thus, for all (z, ξ, x) ∈ U (̃z)×U (˜ξ)×U (̃x) we find η ∈ A(z, ξ) satisfying
(3.8). This proves (3.3), as desired.

It is worth noticing that the proof of Lemma 3.1 does not require the convexity of the sets
E and K . ��
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Corollary 3.1 Let (G, D) be a β-pair and let K ′ be a nonempty subset of K . Then for all
(z, ξ) ∈ E × K and η′ ∈ K ′, the set

{x ∈ K ′ : β(G(z, ξ, x, η′), D(z, ξ, x, η′))}
is closed in K ′.

Proof Let us fix η′ ∈ K ′ and consider the constant map

(z, ξ) ∈ E × K �→ A′(z, ξ) = {η′}.
Then by Lemma 3.1 the map ϕ′

β : E × K −→ 2K , defined by

ϕ′
β(z, ξ) = {x ∈ K : β(G(z, ξ, x, η), D(z, ξ, x, η)), ∀η ∈ A′(z, ξ)}

= {x ∈ K : β(G(z, ξ, x, η′), D(z, ξ, x, η′))}
is closed. Hence, for all (z, ξ) ∈ E × K ϕ′

β(z, ξ) is closed in K . Since K ′ is a subset of K ,
it follows that K ′ ∩ ϕ′

β(z, ξ) is closed in K ′. ��
Let ˜G : K −→ 2Y and ˜D : K −→ 2Y be set-valued maps with nonempty values. Let

Kα = {x ∈ K : α(˜G(x), ˜D(x))}.
Corollary 3.2 The set Kα is closed in K and the set Kα is open in K if one of the following
conditions holds:

1. α = α1, ˜G is usc and compact-valued, and ˜D has open graph.
2. α = α2, ˜G is lsc, and ˜D has closed graph.
3. α = α3, ˜G is usc and compact-valued, and ˜D has closed graph.
4. α = α4, ˜G is lsc, and ˜D has open graph.

Proof Since Kα is the complement of Kα in K , it suffices to prove that Kα is closed in
K . Setting β = α,G(z, ξ, x, η) ≡ ˜G(x) and D(z, ξ, x, η) ≡ ˜D(x), we see that ϕβ is a
constant (set-valued) map. Namely, for all (z, ξ) ∈ E × K , ϕβ(z, ξ) ≡ Kβ . Therefore, the
closedness (in K ) of Kα is a consequence of Proposition 3.1 and Lemma 3.1 applied to the
pair (˜G, ˜D). ��

We now formulate the second lemma which is needed for the proof of the main result of
this paper.

Lemma 3.2 (see [37]) Let A : E × K −→ 2K be a compact upper semicontinuous map
with closed values, B : E × K −→ 2E be a compact acyclic map, and ϕ : E × K −→ 2K

be a closed map such that, for all (z, ξ) ∈ E × K , the set ψ(z, ξ) = ϕ(z, ξ) ∩ A(z, ξ) is
nonempty and acyclic. Then the map V := B × ψ has a fixed point.

Proof This is a consequence of Theorem 2.1 applied to map V . ��
Given set-valued maps F,C,G and D from W := E × K × K × K to Y, let us set

Tα(z, ξ) = {x ∈ A(z, ξ) : α(F(z, ξ, x, η),C(z, ξ, x, η)), ∀η ∈ A(z, ξ)},
Sβ(z, ξ) = {x ∈ A(z, ξ) : β(G(z, ξ, x, η), D(z, ξ, x, η)), ∀η ∈ A(z, ξ)}.

The main result of this paper is expressed in the following theorem.

Theorem 3.1 Let A : E × K −→ 2K be a compact continuous map with closed values, and
B : E × K −→ 2E be a compact acyclic map. Let α and β be arbitrary relations on 2Y . Let
(G, D) be a β-pair such that
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(i) Sβ ⊂ Tα.
(ii) For all (z, ξ) ∈ E × K , Sβ(z, ξ) is nonempty and acyclic.

Then there exists a solution of Problem (Pα).

Proof Consider the map τα : E × K −→ 2E×K defined by τα(z, ξ) = B(z, ξ) × Tα(z, ξ)
for all (z, ξ) ∈ E × K . Observe that Problem (Pα) has a solution (z0, x0) ∈ E × K if and
only if (z0, x0) is a fixed point of map τα.On the other hand, by condition (i) Vβ ⊂ τα where
Vβ := B × Sβ. Hence, the problem of finding a solution of (Pα) reduces to that of finding a
fixed point of Vβ . Observe that

Sβ(z, ξ) = ϕβ(z, ξ) ∩ A(z, ξ)

where ϕβ, defined in Lemma 3.1, is a closed map. Applying Lemma 3.2 with ψ = Sβ and
ϕ = ϕβ, we derive that Vβ has a fixed point, as desired. ��
Theorem 3.2 Let A : E × K −→ 2K be a compact continuous map with closed values,
and B : E × K −→ 2E be a compact acyclic map. Let α be an arbitrary relation on 2Y .

Let (F,C) be a α-pair such that, for all (z, ξ) ∈ E × K , Tα(z, ξ) is nonempty and acyclic.
Then there exists a solution of Problem (Pα).

Proof This is a consequence of Theorem 3.1 with β = α and (G, D) = (F,C). ��
Corollary 3.3 Let A and B be as in Theorem 3.2. Let f : E × K × K −→ Y be a sin-
gle-valued continuous map and C ′ : E × K −→ 2Y be a set-valued map such that, for all
(z, ξ) ∈ E × K ,C ′(z, ξ) �= Y and C ′(z, ξ) is a closed convex cone with nonempty interior.
Assume additionally that

(i) The map

(z, ξ) ∈ E × K �−→ int C ′(z, ξ)

has open graph.
(ii) For all (z, ξ) ∈ E × K , the set

{x ∈ A(z, ξ) : [ f (z, ξ, x)− f (z, ξ, A(z, ξ))] ∩ int C ′(z, ξ) = ∅} (3.12)

is acyclic.

Then there exists (z0, x0) ∈ E × K such that (z0, x0) ∈ B(z0, x0) × A(z0, x0) and, for all
η ∈ A(z0, x0),

f (z0, x0, x0)− f (z0, x0, η) /∈ int C ′(z0, x0).

Proof For all w = (z, ξ, x, η) ∈ W := E × K × K × K , let us set F(w) = f (z, ξ, η),
C(w) = f (z, ξ, x)− int C ′(z, ξ). (Thus, F does not depend on x and C does not depend on
η.) Since f is a single-valued continuous map, we see that F is continuous, and C has open
graph. By Proposition 3.1 (F,C) is a α-pair with α = α1.On the other hand, the set (3.12) is
exactly the set Tα1(z, ξ)which is acyclic by assumption (ii). In addition, this set is nonempty
(see [18,31]). To complete the proof it remains to apply Theorem 3.2 with α = α1. ��
Remark 3.1 Theorem 1 of [20], Theorem 2.1 of [21], Theorem 3 of [23], Theorem 3.1 of [5]
and Theorem 3.8 of [6] are direct consequences of Corollary 3.3.
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Corollary 3.4 Let A and B be as in Theorem 3.2. Let F : W −→ 2Y be lsc and let
C : W −→ 2Y have closed graph. Assume that, for all (z, ξ) ∈ E × K , the set

{x ∈ A(z, ξ) : F(z, ξ, x, η) ⊂ C(z, ξ, x, η), ∀η ∈ A(z, ξ)}
is nonempty and acyclic. Then there exists a point (z0, x0) ∈ E × K such that (z0, x0) ∈
B(z0, x0)× A(z0, x0) and for all η ∈ A(z0, x0)

F(z0, x0, x0, η) ⊂ C(z0, x0, x0, η).

Proof Apply Theorem 3.2 with α = α2 and observe by Proposition 3.1 that (F,C) is a
α2-pair. ��
Remark 3.2 Corollary 3.4 improves Theorem 3.1 of [43] and proves that both Problems (P1)

and (P2)mentioned in [43] (i.e. Problems (˜P1) and (˜P2) formulated in the Introduction) can
be investigated by a unified approach. This remark is based on the fact that Problem (˜P1)

(resp. (˜P2)) corresponds to the case when F(z, ξ, x, η) does not depend on x (resp. η) and
C(z, ξ, x, η) does not depend on η (resp. x).

Remark 3.3 With the help of Corollary 3.4 we can derive Theorem 1 of [13], and Theorems
3.1 and 3.2 of [39] under conditions which are much weaker than those of [13,39]. For a
detailed discussion, see [43].

Corollary 3.5 Let Yi , i = 1, 2, be topological vector spaces. Let E⊂Z and Ki⊂Xi , i =
1, 2, be nonempty convex sets where Z and Xi are locally convex Hausdorff topological
vector spaces. Let B ′ : E × K1 × K2 −→ 2E be a compact acyclic map and let Ai :
E × K1 × K2 −→ 2Ki , i = 1, 2, be compact continuous maps with nonempty closed val-
ues. Let Ci : E × K1 × K2 −→ 2Yi , i = 1, 2, be set-valued maps such that, for each
(z, ξ1, ξ2) ∈ E × K1 × K2 and each i = 1, 2, Ci (z, ξ1, ξ2) is a closed convex cone with
nonempty interior and Ci (z, ξ1, ξ2) �= Yi . Assume that the set-valued maps

(z, ξ1, ξ2) ∈ E × K1 × K2 �−→ int Ci (z, ξ1, ξ2), i = 1, 2,

have open graphs. Assume that ϕi : E × K1 × K2 −→ Yi , i = 1, 2, are single-valued
continuous maps such that at least one of the following conditions (i) and (ii) is satisfied:

(i) For each (z, ξ1, ξ2) ∈ E × K1 × K2, the sets

a1(z, ξ1, ξ2) = {x1 ∈ A1(z, ξ1, ξ2) :
[ϕ1(z, x1, ξ2)− ϕ1(z, A1(z, ξ1, ξ2), ξ2)] ∩ int C1(z, ξ1, ξ2) = ∅},

a2(z, ξ1, ξ2) = {x2 ∈ A2(z, ξ1, ξ2) :
[ϕ2(z, ξ1, x2)− ϕ2(z, ξ1, A2(z, ξ1, ξ2))] ∩ int C2(z, ξ1, ξ2) = ∅},

are acyclic.
(ii) For each (z, ξ1, ξ2) ∈ E × K1 × K2, Ai (z, ξ1, ξ2), i = 1, 2, are convex, ϕ1(z, ·, ξ2) is

properly C1(z, ξ1, ξ2)-quasiconvex and ϕ2(z, ξ1, ·) is properly C2(z, ξ1, ξ2)-
quasiconvex.

Then there exists a point (z0, x0
1 , x0

2 ) ∈ E × K1 × K2 such that z0 ∈ B ′(z0, x0
1 , x0

2 ), x0
i ∈

Ai (z0, x0
1 , x0

2 ), i = 1, 2, and

ϕ1(z0, x0
1 , x0

2 )− ϕ1(z0, η1, x0
2 ) /∈ int C1(z0, x0

1 , x0
2 ), ∀η1 ∈ A1(z0, x0

1 , x0
2 ),

ϕ2(z0, x0
1 , x0

2 )− ϕ2(z0, x0
1 , η2) /∈ int C2(z0, x0

1 , x0
2 ), ∀η2 ∈ A2(z0, x0

1 , x0
2 ).
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Proof Let us set X = X1 × X2, Y = Y1 × Y2 and K = K1 × K2. For z ∈ E, ξ = (ξ1, ξ2) ∈
K = K1 × K2, x = (x1, x2) ∈ K = K1 × K2 and η = (η1, η2) ∈ K = K1 × K2 let us set

F(z, ξ, x, η)= {[ϕ1(z, x1, ξ2)−ϕ1(z, η1, ξ2)]×[ϕ2(z, ξ1, x2)−ϕ2(z, ξ1, η2)]
}⊂Y =Y1×Y2,

A(z, ξ) = A1(z, ξ1, ξ2)× A2(z, ξ1, ξ2) ⊂ K = K1 × K2,

B(z, ξ) = B ′(z, ξ1, ξ2) ⊂ E,

C(z, ξ, x, η) = [Y1\int C1(z, ξ1, ξ2)] × [Y2\int C2(z, ξ1, ξ2)] ⊂ Y = Y1 × Y2.

To apply Corollary 3.4 we need to prove that, for each z ∈ E and each ξ = (ξ1, ξ2) ∈
K1 × K2 = K , the set

˜A(z, ξ) := {x ∈ A(z, ξ) : F(z, ξ, x, η) ⊂ C(z, ξ, x, η), ∀η ∈ A(z, ξ)}
is nonempty and acyclic. Indeed, by the above definitions of F and A we can verify that

˜A(z, ξ) = ã1(z, ξ)× ã2(z, ξ) ⊂ K1 × K2 ⊂ X1 × X2

where

ã1(z, ξ) = {x1 ∈ A1(z, ξ1, ξ2) :
ϕ1(z, x1, ξ2)− ϕ1(z, η1, ξ2) ∈ Y1\int C1(z, ξ1, ξ2), ∀η1 ∈ A1(z, ξ1, ξ2)}

= a1(z, ξ1, ξ2),

ã2(z, ξ) = {x2 ∈ A2(z, ξ1, ξ2) :
ϕ2(z, ξ1, x2)− ϕ2(z, ξ1, η2) ∈ Y2\int C2(z, ξ1, ξ2), ∀η2 ∈ A2(z, ξ1, ξ2)}

= a2(z, ξ1, ξ2).

(For the definition of sets ai (z, ξ1, ξ2), i = 1, 2, see condition (i) of Corollary 3.5.) Since
ϕ1(z, A1(z, ξ1, ξ2), ξ2) and ϕ2(z, ξ1, A2(z, ξ1, ξ2)) are compact, it follows from [18,31] that
ai (z, ξ1, ξ2) �= ∅, i = 1, 2. Therefore, ˜A(z, ξ) is nonempty.

If condition (i) holds, then ˜A(z, ξ) is acyclic since it is the product of acyclic sets ãi (z, ξ),
i = 1, 2.We now prove that ˜A(z, ξ) is acyclic if condition (ii) of Corollary 3.5 holds. Indeed,
observe that

ã1(z, ξ) = A1(z, ξ1, ξ2) ∩ a′
1(z, ξ1, ξ2),

where ξ = (ξ1, ξ2) and the set

a′
1(z, ξ1, ξ2) := {

x1 ∈ K1 :
{ϕ1(z, x1, ξ2)} ∩ [ϕ1(z, A1(z, ξ1, ξ2), ξ2)+ int C1(z, ξ1, ξ2)] = ∅}

is convex by the fourth claim of Proposition 2.3. Therefore, ã1(z, ξ) being the intersection
of two convex sets is convex. By a similar argument we can verify that ã2(z, ξ) is convex.
Therefore, ˜A(z, ξ) being the product of two convex sets is convex and hence, it is acyclic, as
desired.

Now, applying Corollary 3.4 we claim that there exist points z0 ∈ E, x0 := (x0
1 , x0

2 ) ∈
K = K1 × K2 such that z0 ∈ B(z0, x0) = B ′(z0, x0

1 , x0
2 ), x0 = (x0

1 , x0
2 ) ∈ A(z0, x0) =

A1(z0, x0
1 , x0

2 )× A2(z0, x0
1 , x0

2 ) and

F(z0, x0, x0, η) = {[ϕ1(z0, x0
1 , x0

2 )− ϕ1(z0, η1, x0
2 )] × [ϕ2(z0, x0

1 , x0
2 )− ϕ2(z0, x0

1 , η2)]}
⊂ [Y1\int C1(z0, x0

1 , x0
2 )] × [Y2\int C2(z0, x0

1 , x0
2 )]

for all η = (η1, η2) ∈ A(z0, x0) = A1(z0, x0
1 , x0

2 ) × A2(z0, x0
1 , x0

2 ). This proves that the
point (z0, x0

1 , x0
2 ) satisfies the conclusion of Corollary 3.5. ��
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Remark 3.4 When E and B are absent,ϕi (z, ξ1, ξ2) and Ai (z, ξ1, ξ2), i = 1, 2,do not depend
on z, and Ci (z, ξ1, ξ2), i = 1, 2, do not depend on z, ξ1 and ξ2, Corollary 3.5 becomes a
theorem in [14,p. 710] dealing with the existence of solutions of symmetric quasi-equilibrium
problems.

Remark 3.5 Corollary 3.3 can be derived from Corollary 3.5 by setting X1=X2=X,Y1=Y2 =
Y, K1 = K2 = K , A1(z, ξ1, ξ2) = {ξ2}, A2(z, ξ1, ξ2) = A(z, ξ1), B ′(z, ξ1, ξ2) = B(z, ξ1),

C1(z, ξ1, ξ2) = C2(z, ξ1, ξ2) = C ′(z, ξ1) and ϕ1(z, ξ1, ξ2) = ϕ2(z, ξ1, ξ2) = f (z, ξ1, ξ2),

where z ∈ E, ξ1 ∈ K , ξ2 ∈ K , and A, B,C ′ and f are set-valued maps mentioned in
Corollary 3.3.

Now, for each fixed point (z, ξ) ∈ E × K we set a = A(z, ξ) and we consider the set-val-
ued map fz,ξ : a ×a −→ 2Y defined by setting fz,ξ (x, η) = F(z, ξ, x, η) for (x, η) ∈ a ×a.
The maps cz,ξ , gz,ξ and dz,ξ are defined similarly.

Theorem 3.3 Let A : E × K −→ 2K be a compact continuous map with closed convex
values, and B : E × K −→ 2E be a compact acyclic map. Let α be an arbitrary relation
on 2Y . Let (F,C) be a α-pair such that, for all (z, ξ) ∈ E × K , Tα(z, ξ) is acyclic and, in
addition, the following conditions are satisfied :

(i) For all x ∈ A(z, ξ), the set

{η ∈ A(z, ξ) : α( fz,ξ (x, η), cz,ξ (x, η))}
is convex.

(ii) For all x ∈ A(z, ξ), α( fz,ξ (x, x), cz,ξ (x, x)).

Then there exists a solution of Problem (Pα).

Proof First observe from Corollary 3.1 with K ′ = A(z, ξ) that for all η ∈ A(z, ξ) the set
{x ∈ A(z, ξ) : α( fz,ξ (x, η), cz,ξ (x, η))} is closed in A(z, ξ). Now making use of Proposi-
tion 2.1 with β = α, f = g = fz,ξ , c = d = cz,ξ we derive that Tα(z, ξ) is nonempty
for all (z, ξ) ∈ E × K . It remains to apply Theorem 3.2 to obtain the conclusion of
Theorem 3.3. ��
Remark 3.6 Proposition 2.3 can be used to derive condition (i) of Theorem 3.3 if C(z, ξ, x, η)
does not depend on η and is of the form

C(z, ξ, x, η) = H(z, ξ, x)+ int C ′(z, ξ, x) (3.13)

or

C(z, ξ, x, η) = H(z, ξ, x)+ C ′(z, ξ, x) (3.14)

where H(z, ξ, x) ⊂ Y is a nonempty set and C ′(z, ξ, x) ⊂ Y is a nonempty convex cone.
For example, if C is of the form (3.13) with H(z, ξ, x) being convex and if fz,ξ (x, ·) is
natural [−C ′(z, ξ, x)]-quasiconvex on A(z, ξ), then condition (i) of Theorem 3.3 holds for
α = α1.

From Remark 3.6 we see that combining Theorem 3.3, and Propositions 3.1 and 2.3 will
give existence results for Problem (Pαi ) where C is of the form (3.13) or (3.14). We will not
formulate all of these existence results. But, as an illustrating example, we restrict ourselves
to an existence result for Problem (Pα1).

Corollary 3.6 Let A and B be as in Theorem 3.3. Assume that F : W −→ 2Y is usc
and compact-valued, and C : W −→ 2Y is of the form (3.13) where H(z, ξ, x) ⊂ Y is a
nonempty convex set and C ′(z, ξ, x) ⊂ Y is a convex cone with nonempty interior. Assume
additionally that
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(i) The map C defined by (3.13) has open graph.
(ii) For all (z, ξ) ∈ E × K and x ∈ A(z, ξ), F(z, ξ, x, ·) is natural [−C ′(z, ξ, x)]-quasi-

convex on A(z, ξ).
(iii) For all (z, ξ) ∈ E × K and x ∈ A(z, ξ),

F(z, ξ, x, x) �⊂ H(z, ξ, x)+ int C ′(z, ξ, x).

If for all (z, ξ) ∈ E × K the set Tα1(z, ξ), i.e., the set

{x ∈ A(z, ξ) : F(z, ξ, x, η) �⊂ H(z, ξ, x)+ int C ′(z, ξ, x), ∀η ∈ A(z, ξ)},
is acyclic, then there exists a solution of Problem (Pα1).

Proof Use Theorem 3.3 and Remark 3.6 with α = α1. ��
Remark 3.7 The requirement of Corollary 3.6 that the set Tα1(z, ξ) is acyclic is automatically
satisfied if H(z, ξ, x) and C ′(z, ξ, x) do not depend on x, i.e., H(z, ξ, x) ≡ H(z, ξ) and
C ′(z, ξ, x) ≡ C ′(z, ξ), and if F(z, ξ, ·, η) is generalized proper [−C ′(z, ξ)]-quasiconcave
on A(z, ξ). This is because in this case Tα1(z, ξ) is convex (Proposition 2.3).

Theorem 3.4 Let A : E × K −→ 2K be a compact continuous map with closed convex
values, and B : E ×K −→ 2E be a compact acyclic map. Let α and β be arbitrary relations
on 2Y . Let (G, D) be a β-pair such that, for all (z, ξ) ∈ E × K , Sβ(z, ξ) is acyclic. Assume
additionally that, for each (z, ξ) ∈ E × K , the set a = A(z, ξ) and the maps f = fz,ξ ,

c = cz,ξ , g = gz,ξ and d = dz,ξ satisfy conditions (i), (iii), (iv) of Proposition 2.1 and
conditions (i), (ii) and (iii) of Proposition 2.2. Then there exists a solution of Problem (Pα).

Proof This is a consequence of Theorem 3.1 since by Proposition 2.1 Sβ(z, ξ) is nonempty,
and by Proposition 2.2 Sβ(z, ξ) ⊂ Tα(z, ξ) for all (z, ξ) ∈ E × K . (Condition (ii) of Prop-
osition 2.1 is satisfied by Corollary 3.1.) ��

The rest of this section is devoted to discussions related to the sets Sβ(z, ξ) and Tα(z, ξ).
In some existence results we have assumed that Sβ(z, ξ) or Tα(z, ξ) is acyclic. Such an
assumption for sets similar to Sβ(z, ξ) and Tα(z, ξ) is used in several papers dealing with
vector equilibrium problems (see e.g. [20,21,27,29,42] and references therein). Observe that
checking this assumption becomes easier if some convexity properties are introduced (see
[20,21,27,29,42]). In case of Sβ(z, ξ) we have the following result which gives sufficient
conditions for Sβ(z, ξ) to be acyclic. (Similar result can be formulated for Tα(z, ξ).)

Proposition 3.2 Let (z, ξ) be a fixed point of E × K . Assume that A(z, ξ) is convex and, for
each η ∈ K , the set

{x ∈ K : β(G(z, ξ, x, η), D(z, ξ, x, η))} (3.15)

is convex. Then Sβ(z, ξ) is convex (and hence, it is acyclic).

Proof Let us denote the convex set (3.15) by Sβ(z, ξ, η). Then

S′
β(z, ξ) :=

⋂

η∈A(z,ξ)

Sβ(z, ξ, η)

is convex since it is expressed as the intersection of a family of convex sets. On the other
hand, by the definition of Sβ(z, ξ) we get

Sβ(z, ξ) = A(z, ξ) ∩ S′
β(z, ξ).

This proves the convexity of Sβ(z, ξ) since both sets A(z, ξ) and S′
β(z, ξ) are convex. ��
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Remark 3.8 If D(z, ξ, x, η) does not depend on x and can be expressed as the sum of a
convex set and a convex cone, then the convexity of the set (3.15), with β = α1, α2, α3, α4,

is assured by an appropriate convexity property of the map G(z, ξ, ·, η) (see the conditions
for convexity of the set Qαi in Proposition 2.3).

Remark 3.9 For each (z, ξ) ∈ E × K the nonemptiness of Sβ(z, ξ) can be derived from
Proposition 2.1 with suitable assumptions of a = A(z, ξ), g(x, η) = G(z, ξ, x, η) and
d(x, η) = D(z, ξ, x, η) (see the proof of Theorem 3.4). Similarly, the nonemptiness of
Tα(z, ξ) can be obtained from Proposition 2.1 (see the proof of Theorem 3.3).

Remark 3.10 We have seen from the above discussions that by means of Proposition 3.2 (resp.
Proposition 2.1) sufficient conditions for the set Sβ(z, ξ) to be acyclic (resp. nonempty) can
be given in terms of conditions imposed on the maps F,G,C, D and A. Thus, these con-
ditions guarantee the validity of the assumption (ii) of Theorem 3.1. On the other hand, the
assumption (i) of Theorem 3.1 is usually assured by a pseudomonotonicity type condition
where some links between F,G,C, D and A are required to be satisfied. So, with the help of
Propositions 3.2 and 2.1, and a pseudomonotonicity type assumption, the formulation of the
assumptions (i) and (ii) in Theorem 3.1 can be replaced by suitable conditions imposed on
F,G,C, D and A. In other words, we can derive from Theorem 3.1 sufficient conditions for
the existence of solutions of Problem (Pα)without mentioning the sets Sβ(z, ξ) and Tα(z, ξ).
(Similar remarks can be made for Theorems 3.2–3.4.) For the case α = α1, α2, α3, α4, exis-
tence theorems for Problem (Pα) will be obtained in Sect. 4 without the direct appearance of
these sets.

4 Some special cases

Throughout this section we assume that A : E × K −→ 2K is a compact continuous map
with closed convex values and B : E × K −→ 2E is a compact acyclic map. We assume
that for all (z, ξ, x) ∈ E × K × K H(z, ξ, x) ⊂ Y is a nonempty set and C ′(z, ξ, x) ⊂ Y
is a convex cone with nonempty interior. In Theorems 4.1 and 4.4 we additionally assume
that, for all (z, ξ, x) ∈ E × K × K , H(z, ξ, x) is a convex set. This convexity property of
H(z, ξ, x) is not needed for the validity of Theorems 4.2 and 4.3.

This section is devoted to existence theorems for Problem (Pα) where C(z, ξ, x, η) does
not depend on η and is of the form (3.13) (for α = α1 and α = α4) or the form (3.14)
(for α = α2 and α = α3). These are Theorems 4.1–4.4, all of which are consequences of
Theorem 3.4, Corollary 3.2 and Propositions 3.1 and 2.3. Condition (i) in these theorems
plays the role of a pseudomonotonicity assumption and is inspired by the corresponding
pseudomonotonicity condition (i) of Theorems 1 and 1A of [35]. We will give a detailed
proof of Theorem 4.1 and delete the similar proof of Theorems 4.2–4.4.

Theorem 4.1 Assume that F : W −→ 2Y is lsc map. Assume additionally that

(i) For all (z, ξ) ∈ E × K and (x, η) ∈ A(z, ξ)× A(z, ξ),

F(z, ξ, x, η) �⊂ H(z, ξ, x)+ int C ′(z, ξ, x)

�⇒ F(z, ξ, η, x) ⊂ H(z, ξ, η)+ C ′(z, ξ, η).

(ii) For all (z, ξ) ∈ E × K and (x, η) ∈ A(z, ξ)× A(z, ξ) with x �= η, if F(z, ξ, x, η) ⊂
H(z, ξ, x)+ int C ′(z, ξ, x) then F(z, ξ, u, η) ⊂ H(z, ξ, u)+ int C ′(z, ξ, u) for some
u ∈ ]x, η[.
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(iii) For all (z, ξ, x) ∈ E × K × K , F(z, ξ, x, ·) is natural [−C ′(z, ξ, x)]-quasiconvex on
A(z, ξ).

(iv) For all (z, ξ) ∈ E × K and x ∈ A(z, ξ),

F(z, ξ, x, x) �⊂ H(z, ξ, x)+ int C ′(z, ξ, x).

(v) The map

(z, ξ, η) ∈ E × K × K �−→ H(z, ξ, η)+ C ′(z, ξ, η)

has closed graph.

Then there exists a solution of Problem (Pα1) with C being defined by (3.13).

Proof This is a consequence of Theorem 3.4 with α = α1, β = α2, C(z, ξ, x, η) =
H(z, ξ, x)+int C ′(z, ξ, x), G(z, ξ, x, η) = F(z, ξ, η, x) and D(z, ξ, x, η) = H(z, ξ, η)+
C ′(z, ξ, η). Indeed, by Proposition 3.1 (G, D) is a β-pair with β = α2. Also, for all
(z, ξ) ∈ E × K the set Sβ(z, ξ) is convex (and hence, it is acyclic). Indeed, in our case

Sβ(z, ξ) = {x ∈ A(z, ξ) : F(z, ξ, η, x) ⊂ H(z, ξ, η)+ C ′(z, ξ, η), ∀η ∈ A(z, ξ)}
=

⋂

η∈A(z,ξ)

S(z, ξ, η)

where

S(z, ξ, η) = {x ∈ A(z, ξ) : F(z, ξ, η, x) ⊂ H(z, ξ, η)+ C ′(z, ξ, η)}
is a convex set (see the second claim of Proposition 2.3). Since Sβ(z, ξ) is the intersection
of a family of convex sets, it must be convex, as required.

It remains to verify that, for fixed (z, ξ) ∈ E × K , the set a = A(z, ξ) and the maps
f = fz,ξ , c = cz,ξ , g = gz,ξ and d = dz,ξ satisfy all conditions of Propositions 2.1
and 2.2 with α = α1 and β = α2. Indeed, condition (i) (resp. (iv)) of Proposition 2.1
is exactly condition (i) (resp. (iv)) of Theorem 4.1 with fixed (z, ξ) ∈ E × K . Condition
(ii) of Proposition 2.1 is derived from the second claim of Corollary 3.2. For the validity
of condition (iii) of Proposition 2.1, see the second claim of Proposition 2.3. Condition (i)
(resp. (iii)) of Proposition 2.2 is exactly condition (ii) (resp. (iv)) of Theorem 4.1. To verify
condition (ii) of Proposition 2.2 it suffices to show that condition (ii)′ in Remark 2.3 is ful-
filled. In other words, assuming that (x, η) ∈ a × a with x �= η, β(g(x, u), d(x, u)) and
α( f (u, η), c(u, η)), i.e., in our case

F(z, ξ, u, x) ⊂ H(z, ξ, u)+ C ′(z, ξ, u), (4.1)

F(z, ξ, u, η) ⊂ H(z, ξ, u)+ int C ′(z, ξ, u), (4.2)

we need to prove that α( f (u, u), c(u, u)) for all u ∈ ]x, η[. Indeed, setting ˜f =
F(z, ξ, u, ·), h = H(z, ξ, u) and c′ = C ′(z, ξ, u)we derive from (4.1) and (4.2) that x ∈ Qα2

and η ∈ qα2 where

Qα2 = {x ∈ a : ˜f (x) ⊂ h + c′},
qα2 = {x ∈ a : ˜f (x) ⊂ h + int c′}.

By Proposition 2.3 u ∈ qα2 for all u ∈ ]x, η[. In other words,

F(z, ξ, u, u) ⊂ H(z, ξ, u)+ int C ′(z, ξ, u),
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i.e.,

α( f (u, u), c(u, u)).

This proves that condition (ii)′ in Remark 2.3 is fulfilled, as desired. ��
Theorem 4.2 Assume that F : W −→ 2Y is a usc and compact-valued map. Assume
additionally that

(i) For all (z, ξ) ∈ E × K and (x, η) ∈ A(z, ξ)× A(z, ξ),

F(z, ξ, x, η) ⊂ H(z, ξ, x)+ C ′(z, ξ, x)

�⇒ F(z, ξ, η, x) �⊂ H(z, ξ, η)+ int C ′(z, ξ, η).

(ii) For all (z, ξ) ∈ E × K and (x, η) ∈ A(z, ξ)× A(z, ξ) with x �= η, if F(z, ξ, x, η) �⊂
H(z, ξ, x) + C ′(z, ξ, x) then F(z, ξ, u, η) �⊂ H(z, ξ, u) + C ′(z, ξ, u) for some u ∈
]x, η[.

(iii) For all (z, ξ, x) ∈ E × K × K , F(z, ξ, x, ·) is generalized proper [−int C ′(z, ξ, x)]-
quasiconcave on A(z, ξ).

(iv) For all (z, ξ) ∈ E × K and x ∈ A(z, ξ),

F(z, ξ, x, x) ⊂ H(z, ξ, x)+ C ′(z, ξ, x).

(v) The map

(z, ξ, η) ∈ E × K × K �−→ H(z, ξ, η)+ int C ′(z, ξ, η)

has open graph.

Then there exists a solution of Problem (Pα2) with C being defined by (3.14).

Theorem 4.3 Assume that F : W −→ 2Y is a lsc map. Assume additionally that

(i) For all (z, ξ) ∈ E × K and (x, η) ∈ A(z, ξ)× A(z, ξ),

F(z, ξ, x, η) ∩ [H(z, ξ, x)+ C ′(z, ξ, x)] �= ∅
�⇒ F(z, ξ, η, x) ∩ [H(z, ξ, η)+ int C ′(z, ξ, η)] = ∅.

(ii) For all (z, ξ) ∈ E × K and (x, η) ∈ A(z, ξ)× A(z, ξ) with x �= η,

if F(z, ξ, x, η) ∩ [H(z, ξ, x)+ C ′(z, ξ, x)] = ∅
then F(z, ξ, u, η) ∩ [H(z, ξ, u)+ C ′(z, ξ, u)] = ∅,

for some u ∈ ]x, η[.
(iii) For all (z, ξ, x) ∈ E × K × K , F(z, ξ, x, ·) is proper [int C ′(z, ξ, x)]-quasiconvex

on A(z, ξ).
(iv) For all (z, ξ) ∈ E × K and x ∈ A(z, ξ),

F(z, ξ, x, x) ∩ [H(z, ξ, x)+ C ′(z, ξ, x)] �= ∅.
(v) The map

(z, ξ, η) ∈ E × K × K �−→ H(z, ξ, η)+ int C ′(z, ξ, η)

has open graph.

Then there exists a solution of Problem (Pα3) with C being defined by (3.14).
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Theorem 4.4 Assume that F : W −→ 2Y is a usc and compact-valued map. Assume
additionally that

(i) For all (z, ξ) ∈ E × K and (x, η) ∈ A(z, ξ)× A(z, ξ),

F(z, ξ, x, η) ∩ [H(z, ξ, x)+ int C ′(z, ξ, x)] = ∅
�⇒ F(z, ξ, η, x) ∩ [H(z, ξ, η)+ C ′(z, ξ, η)] �= ∅.

(ii) For all (z, ξ) ∈ E × K and (x, η) ∈ A(z, ξ)× A(z, ξ) with x �= η,

if F(z, ξ, x, η) ∩ [H(z, ξ, x)+ int C ′(z, ξ, x)] �= ∅
then F(z, ξ, u, η) ∩ [H(z, ξ, u)+ int C ′(z, ξ, u)] �= ∅,

for some u ∈ ]x, η[.
(iii) For all (z, ξ, x) ∈ E × K × K , F(z, ξ, x, ·) is C ′(z, ξ, x)-concave on A(z, ξ).
(iv) For all (z, ξ) ∈ E × K and x ∈ A(z, ξ),

F(z, ξ, x, x) ∩ [H(z, ξ, x)+ int C ′(z, ξ, x)] = ∅.
(v) The map

(z, ξ, η) ∈ E × K × K �−→ H(z, ξ, η)+ C ′(z, ξ, η)

has closed graph.

Then there exists a solution of Problem (Pα4) with C being defined by (3.13).

Remark 4.1 Existence results for each of Problems (Pαi ), i = 1, 2, 3, 4, are obtained in [17].
Unfortunately, as we have seen in Sect. 3, they are incorrect. Our Theorems 4.1–4.4 provide
exact existence results for these problems under suitable assumptions which are quite differ-
ent from those of [17]. Observe that Theorems 4.1–4.4 use some pseudomonotonicity type
assumptions (see condition (i) in each of these theorems). Existence results in non-monoto-
nicity/non-pseudomonotonicity cases can be found in [24] (see Theorems 3.2–3.5 of [24] and
Remarks on pages 620, 622, 623 and 625 of [24]) for problems where E and K are metrizable
and conditions (3.13) and (3.14) are simplified: in [24] it is assumed that H(z, ξ, x) ≡ {0}
and C ′(z, ξ, x) does not depend on (z, x). The reader is also referred to [7,22,26,28,44] for
the non-monotonicity/non-pseudomonotonicity cases with Y being topological vector spaces
[22,26] or the extended real line [7,28,44].

Remark 4.2 The pseudomonotonicity type assumptions in Theorems 4.1–4.4 are inspired by
the corresponding notions of pseudomonotonicity of [35] (see [35,Theorem 1, condition (i)]
and [35,Theorem 1A, condition (i)]). Another type of pseudomonotonicity assumption which
is quite different from [35,Theorem 1, condition (i)] and from our condition (i) in Theorem
4.1 can be found in [34,Theorem 1, condition (iv)]. Pseudomonotonicity assumptions which
are different from the corresponding ones of [35], but similar to condition (iv) of Theorem 1
of [34], are also introduced in [1,2,8,10,19,25,30,38] to deal with some simplified versions
of Problem (Pα1). So, the results of these papers and the ones of our Theorem 4.1 are different
since the pseudomonotonicity type assumptions used in these papers and in our Theorem 4.1
are not the same.

Remark 4.3 Our Theorem 4.1 is different from Corollary 1 of [35]. Indeed, firstly in
[35,Corollary 1] it is assumed that A(z, ξ) ≡ K (i.e. A is a constant set-valued map),
H(z, ξ, x) ≡ {0}, and F(z, ξ, x, η) ≡ F(x, η) and C ′(z, ξ, x) ≡ C ′(x) (i.e. both the maps
F and C ′ do not depend on (z, ξ)), while in our Theorem 4.1 all these conditions are not
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required to be satisfied. Secondly, if we restrict ourselves to Problem (Pα1) under the just
mentioned conditions of [35,Corollary 1] (and under the compactness of the set K ), then
we can see that different hypotheses of F(x, η) are used in Corollary 1 of [35] and in our
Theorem 4.1. Namely, in Theorem 4.1 F(x, η) is assumed to be lsc in two variables x and η
but the compactness of F(x, η) is not required to be satisfied at any point (x, η) of K × K ,
while in [35,Corollary 1] it is assumed that, for all (x, η) ∈ K × K with x �= η, F(x, ·) is
lsc, and F(·, η) is usc and compact-valued on [x, η].

Remark 4.4 Remark 4.3 indicates the difference of our Theorem 4.1 and Corollary 1 of [35].
Similar difference can be shown between our Theorem 4.4 and the corresponding result of
[35] dealing with a simplified version of Problem (Pα4). Observe that Problems (Pα2) and
(Pα3) are not considered in [35] and hence, the paper [35] does not contain results similar to
our Theorems 4.2 and 4.3.
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